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A discontinuous Galerkin (DG) method is formulated, implemented, and tested for sim-

ulation of compressible turbulent flows. The method is applied to turbulent channel

flow at low Reynolds number, where it is found to successfully predict low-order statis-

tics with fewer degrees of freedom than traditional numerical methods. This reduction

is achieved by utilizing local hp-refinement such that the computational grid is refined

simultaneously in all three spatial coordinates with decreasing distance from the wall.

Another advantage of DG is that Dirichlet boundary conditions can be enforced weakly

through integrals of the numerical fluxes. Both for a model advection-diffusion problem
and for turbulent channel flow, weak enforcement of wall boundaries is found to improve

results at low resolution. Such weak boundary conditions may play a pivotal role in wall

modeling for large-eddy simulation.

1. Introduction

In this paper we formulate, implement, and apply a discontinuous Galerkin (DG)
method for the simulation of compressible turbulent flows. Discontinuous Galerkin can

be thought of as a hybrid of finite-volume and finite-element methods that has a number

of potential advantages including: high-order accuracy on unstructured meshes, local hp-

refinement, weak imposition of boundary conditions, local conservation, and orthogonal
hierarchical bases that support multiscale turbulence modeling (Hughes et al. 2000; Collis

2001, 2002). The interested reader should consult the review of Cockburn (1999) and

Cockburn et al. (2000) for a recent update on the status of discontinuous Galerkin. Since
the DG method is ideally suited for hyperbolic or nearly hyperbolic systems, we believe

that DG may be a particularly attractive method for high-Reynolds-number compressible
turbulent flows in complex geometries. This paper takes a first step in applying DG

to turbulent flows by considering low-Reynolds-number DNS of compressible turbulent

channel flow. We note, before proceeding, that there is considerable ongoing research on

DG methods (see Cockburn et al. 2000) and we have greatly benefited from the work of
Cockburn and co-workers, Karniadakis and co-workers, and Bassi and Rebay.

2. Formulation

Consider the compressible Navier-Stokes equations in strong form

U,t+F_i-F "v'=s in_, (2.1a)

U(x,O) = Uo(x) at t = 0, (2.1b)

where U = {p, pu, pe} T is the vector of conserved variables, p is the fluid density, u is the
fluid velocity vector, and e is the total energy per unit mass. The inviscid and viscous
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FmURE 1. Schematic of DGM discretization

flux vectors in the ith coordinate direction are Fi(U) and F_(U), and S is a source

term, including body forces in the momentum equations and a heat source in the energy

equation. Equation (2.1a)is solved subject to appropriate boundary conditions, which

must be specified for each problem of interest; a state equation, such as the ideal gas
equation; and constitutive laws that define fluid properties such as viscosity and thermal

conductivity as functions of the conserved variables. Due to space limitations, we do not

explicitly define the flux vectors, state equation, or constitutive relations, but instead
refer the reader to standard texts such as Hirsch (1988).

The fixed spatial domain for the problem is denoted by n, which is an open, connected,
bounded subset of JR d, d = 2 or 3, with boundary on. Let Ph be a partition of the domain
n into N subdomains ne where

N

_=U_e and neNf_/=0 for e#f. (2.2)
e=l

Starting from the strong form of the compressible Navier-Stokes equations (2.1a), we
consider a single subdomain, nie, multiply by a weighting function W which is continuous

in nie, and integrate the flux terms by parts

where F, = fini. If the solution were assumed to be continuous and this equation

were summed over all the elements in Ph, then all the flux terms would telescope to
the boundary On and we would obtain the standard continuous Galerkin form of the

compressible Navier-Stokes equations. However, in discontinuous Galerkin, one instead
allows the solution and weighting functions to be discontinuous across element inter-

faces (see figure 1) and the solutions on each element are coupled using appropriate

numerical fluxes for both the inviscid flux Fn(U) --+ Fn(U-, U +) and the viscous flux,

r[(u, u j) -, u 5,u ÷, ÷U j). Introducing numerical fluxes and summing over
all elements yields

N

Y_ wTu,t + W,i(Fi - Fi) dx +

e_l ne
N N

/ W T (Fn(U-,U +) - F:(U-,U_,U+,U+)) ds = _ f WrSds (2.4)
¢=1 0_¢ e=l fl,

where the U + and U- statesare definedinfigureI.For an element edge on the physical



DG methods for turbulence simulation 157

boundary 3f_, U + = Ubc. Likewise, for inter-element boundaries, U + comes from the

neighboring element. Thus, all interface and boundary conditions are set through the
numerical fluxes. Rewriting (2.4) in a more compact notation, the discontinuous Galerkin

method is:

Given U0 = Uo(z), for t E (0,T), find U(x,t) E V(79h) x HI(0, T) such that U(x,O) =

Uo(X) and

BDG(W, U) = (W, S) VW E V(_h), (2.5)

where Y(7_h) is the broken space defined in Baumann & Oden (1999). If l;(Ph) is restricted

to a space of continuous functions, then one recovers the classical continuous Galerkin

approximation upon using the consistency properties of the numerical fluxes (Cockburn

1999).

While there is a wide range of choices for both the inviscid and viscous numerical

fluxes (see Cockburn (1999) for a thorough review), we have initially chosen to use a
Lax-Friedrichs method for the Euler flux

1

F,_(U-, U +) = _ (Fn(U-) + Fn(U+)) + Am (U- - U +)
(2.6)

where Am is the maximum, in absolute value, of the eigenvalues of the Euler Jacobian

An = cgFn/OU.

For the numerical viscous flux, we use the method of Bassi & Rebay (1997). First, a

"jump savvy" gradient of the state, aj -,, Uj is computed by solving

N N N

e=l f2, e=l f2_ e=l 0f2,

VV E V(7_h) (2.7)

for each direction, j, where

1 (U- + V +)0= 7

The Bassi-Rebay viscous flux is then computed using

(2.8)

^v 1 (;_(v-, _7) + r_( U+, _))F,(U-, _7, U+, _7) = 5 (2.9)

While this method is known to be only "weakly stable," (Arnold et al. 2002) we have

not encountered any difficulties for the problems considered here, and this method has

been used successfully in the past (Bassi & Rebay 1997). In the future, we will consider

other, provenly-stable, numerical fluxes for the viscous terms, and the reader is referred

to Arnold et al. (2002) for an extensive discussion of the advantages and disadvantages

of a wide range of viscous fluxes for use in discontinuous Galerkin discretizations.

In setting boundary conditions weakly through the numerical fluxes, one must con-
struct a state, Ubc, that enforces the appropriate boundary conditions, and Atkins

(1997) provides a discussion of the important issues involved in selected Ubc. For the
Navier-Stokes calculations reported here, we use the following approach. At far-field

boundaries Ubc is set to freestream values. At isothermal wall boundaries, we evaluate

Ube separately for the convective and viscous fluxes. Let ql = (u-n_ - v-n=)nu and
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q2 = (v-nx - u-n_)n_ then the reconstructed state at a wall for the convective flux is

{ - )Ubc = PP ql (2.10)

P-q2
p-e- + 0.Sp-(q a + q2)

This state enforces the no-penetration condition which is appropriate for both inviscid

and viscous calculations. For the viscous flux, the no-slip condition is enforced using

1)M

where Tw is the prescribed wall temperature, _, is the ratio of specific heats, and M is
the reference Mach number.

By way of summary, the discontinuous Galerkin method is a hybrid of finite-element
and finite-volume methods, where solutions are continuous within an element but dis-

continuous across element interfaces, and elements are coupled via numerical fluxes on

element interfaces. Discontinuous Galerkin has several potential advantages including:

(1) Spectral accuracy on arbitrary meshes, (2) Local hp-refinement, (3) Boundary con-

ditions are imposed weakly through numerical flux, (4) Local conservation allows for
different fidelity models on neighboring elements, (5) Orthonormal hierarchical basis on

each element readily supports multiscale turbulence models, and (6) DG works best near
the hyperbolic limit making it potentially valuable for high Reynolds number turbulence.

A thorough review of the DG method is available (Cockburn 1999) while a more com-

plete description of DG for turbulence simulation including a discussion of multi-scale

turbulence modeling is given in (Collis 2002).

3. Discretization mad implementation

For every element f_e 6 P_ we define the finite-dimensional space Pp_ ((_) of polynomials

of degree <_Pe defined on a master element _. Then

= = CJn. ,¢ • P ,(fi) (3.1)

where Jn, is the Jacobian of the transformation of element 12e to the master element
and

_2p(Vh) = Pp, (ae) C V(7_h) (3.2)

where m is the number of conserved variables; m = 5 in three dimensions.

Thus, the semi-discrete discontinuous Galerkin method is: Given U0 = U0(z), for

t • (0,T), find Uh(z,t) • _;p('Ph) x Hx(O,T) such that

BDG(Wh, Uh) = (Wh, S), VWh • Vp(Ph). (3.3)

We utilize the family of orthogonal, hierarchical bases formed from tensor products of

Jacobi polynomials, as described in Karniadakis & Sherwin (1999), which are supported

in a wide range of elements types in two and three dimensions. For time advancement,

we currently use the third-order TVD-RK method (Shu 1988; Shu & Osher 1988)
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FIGURE 2. Typical parallel speedup for DG implementation on a Pentium IV Beowulf cluster.
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The DG formulation presented above has been implemented using object-oriented pro-

gramming (OOP) in fully modern ANSI/ISO C++ using the Standard Template Library

and generic programming concepts. For efficiency, all kernel computations are performed

using the ATLAS library, and the code runs on a number of operating systems includ-

ing Linux, Windows, and SGI Irix. The code is implemented as an element library that
supports all the operations required for discontinuous Galerkin, and we have used this

library to implement specific solvers for advection-diffusion, Burgers, wave, linearized-

Euler, Euler, Navier-Stokes equations. Due to the inherent locality in the discontinuous

Galerkin discretization, parallel implementation is particularly easy and efficient. We use

the MPI-2 library (including parallel MPI-IO) and parallel efficiency results are shown

in figure 2 for our Pentium IV Beowulf cluster demonstrating excellent scaling.

4. Weak boundary conditions

One of the issues that arises in using discontinuous Galerkin methods is that Dirichlet

boundary conditions axe most naturally enforced weakly through the numerical fluxes.
While similar "weak" boundary conditions have been used for far-field nonrefiecting

boundary conditions in finite-difference discretizations (see e.g. Poinsot & Lele (1992);

Thompson (1987)) the use of weak boundary conditions for wall-type boundary condi-

tions is less common, especially in the flow physics community. In the computational

mechanics and applied mathematics communities there has been prior work on weak
enforcement of Dirichlet boundary conditions in the continuous Galerkin method by

Babuska (1973) and Nitsche (1971) and these methods are related to discontinuous

Galerkin (Arnold et al. 2002). Likewise, the recent work of Layton (1999) provides the-
oretical considerations for weakly enforced Dirichlet boundary conditions for the Stokes

problem that are motivated by observations of improved solution quality compared to

hard Dirichlet boundary conditions.

While one can always set "hard" Dirichlet boundary conditions in any discretization

(including DG), it is interesting to compare the performance of hard boundary conditions
with weak enforcement through the numerical fluxes as described above. As an example,

consider the simple steady forced advection-diffusion problem

u,x = 1 + vu,xx (4.1)

with boundary conditions u(0) = u(1) = 0 and diffusivity v = 0.01. Figure 3 shows re-

sults computed using a discontinuous Galerkin discretization with two p = 6 elements and
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FIGURE 3. Weak (a) and hard (b) Difichlet boundary conditions for an advection-diffusion problem

BC Loo L2 H1
Weak 0.374 0.0198 2.00
Hard 0.251 0.0850 3.35

TABLE 1. Errors in advection diffusion solutions

both hard and weak enforcement of the Dirichlet boundary conditions. This discretiza-

tion was intentionally selected to be coarse in order to highlight the differences between

the two solutions. One clearly sees that oscillations are more pronounced when a hard

boundary condition is used. Conversely, while oscillations are less in the weak case, the

boundary condition on the right side (inside the boundary layer) is only approximately
satisfied; u(1) = 0.374 instead of zero. Table 1 compares the error in the solution in the

Loc, L2, and H1 norms. Consistent with the graphical results, the solution with weak

Dirichlet boundary conditions has four times less error in L2 and is also better in H1.

However, the solution with weak boundary conditions is slightly worse in Lo¢ and this is

directly due to the error in the boundary value. Discarding a small region near x = 1, the

weak solution is also better in L_. While these results are certainly not conclusive, they

are indicative of the potential benefit to be gained from weak enforcement of Dirichlet

boundary conditions that are naturally obtained from a DG discretization. Philosoph-

ically speaking, one should not enforce boundary conditions any more accurately then

the error in the interior solution. Doing so tends to over-constrain the interior solution,

typically leading to oscillations as seen in figure 3(b). By weakly enforcing boundary

conditions one obtains solutions that still feel the influence of the boundary through the

numerical fluxes, but in a manner that is consistent with the accuracy of the interior

solution, leading to improved solutions away from the wall. Given the importance of wall
boundary conditions for near-wall turbulence, we will pay particular attention to the

success of the weak boundary condition throughout the following discussion.

5. Flow over a circular cylinder

Before applying our DG formulation to a turbulent flow, we begin by considering a

benchmark problem of both steady and unsteady flow over a circular cylinder.
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DG DG FD Experiment
Re p = 4 p = 6 6th order

s/d Cd s/d Cd s/d C_ s/d Cd
20 0.96 2.125 0.96 2.124 0.93 1.98 0.9 2.01
40 2.39 1.589 2.39 1.589 2.36 1.50 2.1 1.48

TABLE 2. Drag and separation length for laminar flow over a circular cylinder, with comparison to prior
computations and experiments. The computational and experimental data are taken from Visbal (1986).

5.1. Steady flow

Consider the steady, laminar flow of air past an isothermal circular cylinder kept at

the freestream temperature. The freestream Mach number is M = 0.2 and results are

reported for two Reynolds numbers: 20 and 40. By considering a series of different domain

sizes, we eventually selected a domain of f_ = [-15, 30] × [-30, 30] as sufficiently large to

prevent adverse influence on the net drag and length of the separation bubble. A block
structured mesh using 812 quadrilaterals was generated using a special purpose grid

generator (Tezduyar 1991) and each quadrilateral has polynomial order of either p = 4
or p = 6. Table 2 compares the current DG results for the total drag coefficient, Cd, and

separation bubble length, s/d, with prior high-order finite-difference computations and

experiments. The DG results for both p = 4 and p = 6 are nearly identical, indicating that

these quantities are converged. The DG results are within about 7% of the experimental

results, which is a negligible difference given the difficulty of performing measurments

at such low Reynolds numbers. Comparing the DG results to the prior finite-difference

calculations of Visbal (1986) yields a difference of about 6% in Cd and less than 3% in s/d.

Interestingly, Morgan et al. (2002) recently performed simulations using a block-parallel

version of the same solver used by Visbal (1986) and they report up to 3% difference in

both s/d and Ca. While the source of the discrepencies between these three codes is not
known, the DG results are converged with regard to both domain size and resolution.

5.2. Vortex shedding

Next, consider unsteady vortex shedding from a circular cylinder. The Reynolds number

based on diameter and freestream velocity is Re = 100, the freestream Mach number is

Moo = 0.2 and an isothermal condition is enforced at the cylinder surface with T,_ = Too.

We have performed simulations over a range of domain sizes and have investigated both

h and p-refinement to establish the convergence properties of the method. For brevity,

we show results only for a relatively large rectangular domain, of size xl 6 [-15, 30] and

x2 6 [-30, 30], using 812 quadrilateral elements with a tensor-product basis of Legendre

polynomials on each element, where the polynomial order varies from p = 5 to 8. We note

in passing that this domain was found to be sufficiently large to prevent far-field boundary

influence on the solution. Table 3 documents the convergence of the Strouhal number

St, peak-to-peak lift coefficient ACt, and average drag coefficient Cd with polynomial
order. We see that even with p = 4 all quantities are accurate to three significant figures.

When p = 8 the average drag coefficient is converged to at least 5 significant figures.

The converged Strouhal number is St = 0.1653 which is in excellent agreement with
the experimental value of 0.165 (Williamson 1989). For both the steady and unsteady

cylinder flows, the weak implementation of wall boundary conditions is found to provide
excellent results, even for rather coarse discretizations.
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p St /xC_ Ca
4 0.1652 0.6951 1.4104
5 0.1652 0.6953 1.4105
6 0.1653 0.6958 1.4106
7 0.1653 0.6960 1.4107
8 0.1653 0.6960 1.4107

Expt 0.165 - -

TABLE 3. Convergence with polynomial order for vortex shedding from a circular cylinder at Re = 100.
tExperimental data is from Williamson (I 989)

I 1

I

FIGURE 4. Cross-stream (z--y) quadrature grid for the stretched mesh with p = 5, 4, 3.

6. Fully-developed channel flow

We now consider fully-developed turbulent flow in a plane channel with coordinates

x = xl in the streamwise direction, y = x2 in the wall-normal direction, and z = x3 in the

spanwise direction. The flow is assumed to be periodic in the streamwise and spanwise

directions where the box size is selected so that the turbulence is adequately decorrelated
in both directions. Coleman et al. (1995) provide excellent documentation of DNS results
for compressible channel flows at low ReT.

As a first step towards utilizing DG for turbulent flows, we have performed DNS at

Re_ = 100 with a centerline Mach number of Mc = 0.3 so that comparisons can be made

directly to prior incompressible results (see e.g. Kim et al. (1987); Moser et al. (1999)).

Following Coleman et al. (1995), we use a cold, isothermal wall so that internal energy
created by molecular dissipation is removed from the domain via heat transfer across

the walls, allowing a statistically steady state to be achieved. The bulk mass flow is held

constant by the addition of an xx-momentum source on the right-hand side of (2.1a).

The computational domain is (4r, 2, 47r/3) and this is discretized with an array of

8 x 8 x 8 elements yielding a total of 512 elements. Exploiting the flexibility of the DG

discretization, we use both h and p refinement to more efficiently resolve flow features

near the wall. In particular, two wall-normal distributions of elements are investigated.

We first use a stretched mesh in the wall-normal direction where the grid points are given
by

tanh(cs (2j/N u - 1))
YJ = tanhc, + 1, j = 0,1,...,N u (6.1)

where Nu = 8. For this mesh, we reduce the polynomial order away from the wall,

starting with two layers of p = 5 elements, then a layer of p = 4 followed by a layer

of p = 3 elements near the centerline. Thus, moving from the bottom wall to the top
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wall, the element order varies like: {5, 5, 4, 3, 3, 4, 5, 5) resulting in a total of 79,488
degrees of freedom. Note that the flexibility of the DG method makes it possible to

coarsen simultaneously in all three coordinate directions as one moves away from the

wall. The crossfiow quadrature grid for the stretched mesh is shown in figure 4. We also

have performed simulations using a uniform h mesh in the wall-normal direction but

again with variable p order. For this mesh, two p distributions were considered: a low-

resolution case with p ={5, 5, 4, 3, 3, 4, 5, 5} yielding 79,488 degrees of freedom and a

high-resolution case with p ={6, 6, 5, 4, 4, 5, 6, 6} resulting in 131,456 degrees of freedom.

In all cases, we use third-order TVD-RK time advancement with At = 0.0001. This time
step is a factor of 10 smaller than that typically used in our incompressible code (Collis

et al. 2000) because the incompressible code treats wall-normal viscous terms implicitly.

We are currently enhancing our DG code to support implicit time-advancement.

We also note that computing turbulence statistics from a DG solution requires a sub-

stantial coding effort, so that currently we compute only mean and rms quantities. Higher-

order statistics and spectra will be presented in the future.

We begin by plotting typical instantaneous and average u and p profiles for the

stretched mesh solution in figure 5. In plotting all the results shown in this paper, no

smoothing or other postprocessing has been done to remove the discontinuities inherent

in a DG discretization. Thus, we can clearly see discontinuities in the instantaneous pro-
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DG,

files, especially in p near the center of the channel. However, after averaging, both the
streamwise velocity and density profiles are smooth. One of the nice features of DG is

that if the solution is known to be smooth, then visible jumps in the solution are indica-

tive of low resolution. Thus, with the stretched mesh, the instantaneous turbulent flow

near the center of the channel is only marginally resolved, although near the walls even

the instantaneous profiles appear smooth, indicating good resolution there. However, it is

important to note that even though the resolution near the centerline may be marginal,
the mean flow is well represented.

Evidence to support this claim is given in figure 6 which shows the mean and rms

velocity profiles in wall units, compared to a reference incompressible DNS at the same

Re_. (Chang 2000). Both the mean and rms velocities are in excellent agreement with
the incompressible DNS. Likewise, no discernible discontinuities are observed in either

the mean or the rms profiles. We recall that the DG discretization uses 79,488 degrees of

freedom and is formally between 4th- and 6th-order accurate, depending on the local poly-
nomial order. For comparison, the incompressible DNS uses a hybrid Fourier-Galerkin

method in the planes and second-order finite-volume method in the wall-normal direction

and uses 336,960 degrees of freedom after dealiasing. Thus, the DG solution uses a factor

of 4.2 less degrees of freedom (1.9 if dealiasing is not used in the incompressible case).
On the stretched mesh, the average slip in the streamwise velocity at the wall is 0.002%

of the centerline velocity where the first collocation point is Ay+ = 0.7 from the wall. t

To determine how the weak wall boundary condition influences the solution at coarser

resolution (near the wall) we now consider results using a uniform mesh in the wall-

normal direction. Figure 7 shows the mean streamwise velocity profiles in wall units as

compared to the reference incompressible DNS, for both the low- and high-resolution

cases. Interestingly, we see that the profiles are in excellent agreement with the reference

solution. Such overlap clearly indicates that the mean shear stress is well predicted in

both cases. However, careful examination of figure 7 does show that the law of the wall
u + = y+ is not perfectly satisfied at small y+ because the flow slips at the wall. For the

low resolution case, the slip velocity is 1% of the centerline velocity with A +yw = 2 while

for the higher resolution case there is 0.68% slip with Ay + = 1.6. As expected, as near-
wall resolution is increased, the amount of slip is reduced as the enforcement of the wall

t For reference, the centerline velocity is approximately 16u_ at Re._ = 100.
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boundary condition improves (this is especially true for the stretched mesh). Importantly,

the mean shear and the majority of the mean velocity profile are well predicted even for
the lowest-resolution case when A +Yw = 2, which is less than many RANS models allow.

Similar behavior is found for the rms velocities, as shown in figure 8 for the low- and

high-resolution uniform-mesh cases. One can clearly see the slip in the streamwise rms

velocities at the wall. For the low-resolution case u+rns = 0.65 at the wall, while for the

high-resolution case u+ms = 0.48 at the wall. For reference, the stretched-mesh solution

has u+m, = 0.0062 at wall. Again, as resolution is increased in the near-wall region, the

no-slip boundary condition is enforced to a higher accuracy. Importantly, with the ex-
ception of a region very close to the wall, both the mean and rms profiles throughout

the channel are well predicted for all cases. Our prior experience with hard boundary

conditions has shown that mean shear and rms profiles (i.e. turbulence production) are

incorrectly predicted at low resolutions. Conversely, by enforcing the wall boundary con-

ditions weakly through the numerical fluxes, the influence of the wall on the flow is

correctly simulated in the form of net shear stress and turbulence production, even at

resolutions for which the wall boundary values are inaccurate.
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7. Conclusions

A discontinuous Galerkin method is formulated and implemented for simulation of com-

plex, turbulent, compressible flows. The implementation is validated for both steady and

unsteady separated flow over a circular cylinder, with results in excellent agreement with
prior computations and/or experiments. An important feature of discontinuous Galerkin

is the ability to enforce Dirichlet boundary conditions weakly, through numerical fluxes

at the wall. The advantages of this approach are demonstrated for a simple advection-

diffusion problem, where it it shown that enforcement of a weak boundary condition leads

to a significant reduction in oscillations in the computed solution, resulting in a factor
of 4 times less error in the L2 norm. Applying DG to simulate fully-developed turbulent
flow in a plane channel at low Reynolds number Rer = 100 leads to results in excel-

lent agreement with a reference incompressible DNS. The advantage of weak Dirichlet
boundary enforcement is also demonstrated for this flow, where it is shown that accu-

rate profiles of net shear stress, as well as mean and rms velocity, are obtained at low

resolution--even resolution for which there is significant slip at the wall. In this context,

weakly enforced wall boundary conditions may play a useful role in wail modeling for
large-eddy simulation, where the wall-model is given by a particular numerical flux used
at the wall.
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